
Effect of temperature gradient locally 
applied on a long horizontal cavity 
G. P. Extremet, P. Bontoux and B. Roux* 
A numerical study of buoyancy-driven gas flow in long horizontal cavities, with Pr=0.73, 
was made with reference to the case of local application of a horizontal temperature 
gradient. Such a situation is relevant to crystal growth in two-zone furnaces. The effect of 
the width of the external temperature gradient on the main properties of the flow (velocity 
profiles, isotherm and streamline patterns) was examined for Grashof numbers ranging 
from the conduction regime up to the beginning of the boundary layer regime. An attempt 
was made to correlate the values of the maximum velocity with the aspect ratio of the cavity 
and the width of the external temperature gradient. 
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I n t r o d u c t i o n  

We consider natural convection developing in long horizontal 
cavities subjected to a locally applied horizontal temperature 
gradient. Such a situation appears in crystal growth from 
vapour transport in a closed ampoule placed in a furnance 
which is designed to deliver two large isothermal zones (the hot 
one, at 7"2, on the source side, and the cold one, at T 1, on the 
crystal side) separated by an abrupt temperature gradient. 
There has, until now, been a complete lack of data on flow 
characteristics for crystal growth in such systems. Indeed, all the 
previous analytical and numerical hydrodynamic studies 
devoted to crystal growth systems in long horizontal ampoules 
have been limited to the case where the horizontal temperature 
gradient is uniformly applied along the entire ampoule. 

In such simpler systems, called one-gradient models 
(abbreviated 1 G), a flow regime classification is now rather well 
established (depending on Grashof number Gr) between the 
conduction regime for low Gr and the intermediate and 
boundary layer regimes for higher Gr 1'2. Analytical solutions 
have been obtained for low Gr for two-dimensional and 
cylindrical cavities 3 8. The basic feature of such solutions is 
direct association of a dynamic field to the temperature gradient 
in the centre of the cavity. For  the conduction regime the 
isotherms are vertical in most of the cavity, the temperature 
gradient being everywhere the same as the external gradient 
imposed. For  higher Gr the flow modifies the temperature 
pattern, but the temperature gradient in the centre has been 
expressed in power laws of aspect ratio and Gr, obtained by 
correlating results of direct numerical simulation. 

For the two-zone furnace (abbreviated 2Z), in general the 
temperature variation in the flow is not uniform, even for small 
Gr. The aim of the work described in this paper was to derive 
some empirical laws (through direct numerical simulation) 
expressing the temperature gradient in the centre of the cavity in 
terms of the aspect ratio of the cavity and the width of the 
external temperature gradient imposed by the furnace. A second 
goal was to ascertain if the dynamic field (mainly the maximum 
horizontal velocity) could be directly connected to this internal 
temperature gradient. 

The computations carried out in the present study were 
limited to Pr = 0.73. 

Physical  and m a t h e m a t i c a l  model  

A two-dimensional model was chosen for the analysis of the 
main features of the flow in the vertical plane of a growth 
ampoule in a 2Z furnace system. 
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Geometry and physical model 

We consider the flow in a rectangular domain, as shown in Fig 1. 
This domain is bounded by vertical and horizontal walls 
respectively of lengths H and L, with aspect ratio I = H/L.  The 
vertical walls are maintained at constant but different 
temperatures T 2 and T 1. The temperature profile is the same 
along both the horizontal walls. It varies linearly in y on the 
interval [#1, L - # 1 ]  centred at # = L/2. The width LAT = L -  2#1 
of the imposed (external) temperature gradient is a specific 
parameter of the study. When LAr = L, we obtain the simpler 1 G 
model considered in the analysis of Bontoux et al 9. 

Governing equations 

The dependent primitive variables are the velocities ~ and ~, and 
the temperature T. The density p is directly connected to T 
through the Boussinesq approximation as follows: 

p = Poll - f l (T -  To) ] (1) 

where the subscript 0 refers to reference conditions, and the 
coefficient of thermal expansion is expressed as 

/~= T~ with To=~ (Tt + T2) 

The governing system is given by the Navier-Stokes and 
energy equations, the scales for the dimensionless variables are 
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respectively H and v/H for the length and the velocity, while the 
temperature is defined as 

0 = (T-  To)/AT 
When the vorticity and the steam-function are taken as 

dependent variables, the resulting governing system is written as 
follows: 

3~ 3~ (~ 32~ 32~ 30 
+ u - - + v - - = ~ + ~ + G r  (2) 

3t 3x 3y 3x ~ 3y ~ 3t' 

321P 321// ~ (3) 
3X 2 }- ~y2 = g 

/ 8 0  30 30\ ~20 820 
P r | - - + u - - + v  ] = ~  ~q (4) 

\ 3t 3x 3y} cx" 3), 2 

where 

a~ 3q, 
u= and v = - - -  (5) 

3 5 , ?x 

As usual, the basic dimensionless parameters are the Grashof 
and the Prandlt numbers: 

Gr = flgA TH3/v 2 

and 

Pr = v/tc 

The problem involves two additional parameters, the aspect 
ratio of the cavity, 1, and the reduced width of the external 
temperature gradient, 7= LaT/L. 

Boundary condit ions 

The dynamic boundary conditions on the walls are assumed to 
be the natural no-slip and no-permeability conditions: 

I/s,~ = (&/s ~ = 0  (6) 
' \~?n/,. 

where n is the normal to the wall. 
The thermal conditions are 

(i) at the vertical walls, 

Ow(x,O)= - ~  and 0 w x,~ =~ (7) 

(ii) along the horizontal walls, 

1 
0,~ (0, y) = 0w(1, y) = - ~ + ®(y) (8) 

with 

®(y)=0 for0<~y<~yl 

l for yl~<y~<( 1 ) 
O(y)=(y-y~) 7 7-y, 

®(y)= 1 for ( ll- yl)<~ y<~ l 1 

Note that 7 is related to yl by: 7= 1 -2yll.  
The boundary conditions on the vorticity are derived from 

the numerical approximation of the equation 

~w-k3nZ) ,  * (9) 

the discretized formulation of which is given below. 

A n a l y t i c a l  f l o w  s o l u t i o n s  (7 = 1 , / - ~ 0 )  

For 7 = 1 (the 1G thermal model), analytical flow solutions have 
been proposed 3 6 for the core of shallow cavities (l<< 1). These 
solutions are based on power series expansion of a =  Gr (30/ 
3Y)rn, with the assumption that the velocity is independent of the 
horizontal direction y, the convective terms are small, and the 
temperature gradient in the core, (~O/~y)m, is constant. A 
parallel flow solution is then derived from the first-order terms 

N o t a t i o n  
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Constant in Eqs (10) and (11) 
Constant in Eq (17) 
Gravitational acceleration 
Grashof number =- flgATH3/v 2 
Spatial step size 
Height of the cavity 
Aspect r a t i o -  H/L 
Length of the cavity 
Width of the temperature gradient 
Variable normal to the wall 
Prandtl n u m b e r -  v/• 
Time variable 
Reference temperature 
Temperatures on the vertical walls, cold and 
hot 
Components of the local velocity 
Dimensionless components of velocity- uH/v, 
?H/v 
Dimensionless components of velocity = u/l, 
v/I 
Analytical expression for velocity v (Eq (20)) 
Analytical expression for velocity v (Eqs (21) 
and (22)) 
Computed value for velocity v 
Cartesian coordinates (Fig 1) 
Dimensionless cartesian coordinates- x/H, 
y/L 
Dimensionless cartesian coordinate = ly 
Abscissa defining the gradient width 
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Subscripts 
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Superscipts 

n, n + l  

Relaxation factors 
Thermal expansion coefficient 
Parameter defined as Vmax.c/Vmax 
Reduced width of the external temperature 
gradient = I~T/L 
Horizontal temperature gradient 
Temperature difference = T 2 - T l 
Matching function in Eq (17) 
Vorticity 
Dimensionless temperature =- ( T -  To)/AT 
Horizontal temperature function in Eq (8) 
Thermal diffusivity 
Kinematic viscosity 
Density variables in Eq (1) 
Stream-function 

Reference conditions 
Values on the walls, and near the walls, 
respectively 
Values in the middle of the cavity 
Maximum values 
Computed values 

Steps in the ADI scheme 
Virtual intermediate step in the ADI scheme 
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as follows: 

~b(x) = - ax  2 (x - 1)2/24 (10) 

and 

v(x) = a x ( 2 x -  1)(x- 1)/12 (11) 

This corresponds to two counter-flows coming from the hot 
boundary, above, and from the cold one, below. At low Grashof 
numbers, the horizontal gradient (80/Oy)m is constant in the core 
and generates the main buoyancy forces. This corresponds to 
the core-driven regime described by Cormack et aP '1° and 
Imberger ~.  At large Grashof numbers, the main buoyancy 
forces are located in the end regions (boundary layer regime), 
but functional laws for the variation of (80/8y)m a r e  
available ~ .6. ~ z and allow approximation of the flow profiles with 
Eqs (10) and (11). 

Numerical approximation 

Numerical schemes 

The numerical solution of the differential system, Eqs (2)-(5), is 
made with a hermitian finite difference method, based on a 
fourth-order accurate scheme for the Poisson equation and a 
classical second-order accurate scheme for the transport 
equations~3 15. The relation of Hirsh gives a third-order 
approximation for the vorticity at the boundaries: 

,2 +(4 
~W=hS(~bw ' 6 8~ &p 

~ \  i,~ \ S n / w - l )  

1/82111'\ 
+ z__2 t en )w 1 +0(ha) (12) 

where h is the spatial step size and (w-1 )  refers to the first 
internal point close to the boundary. 

As proposed by Mallinson and De Vahl Davis 16, convergence 
towards steady state solution is sought with the false transient 
method, for the transport equations in ( and 0, and for the 
Poisson equation in ~b, at which a fictitious time derivative term 
(I/%)(?~O/&) is added. The finite difference system is solved by a 
classical ADI method: 

j 
(9-'0)° le 0x* 

r 2 .+ , / ? 0 \  "+ '  / 8 0 \ * q  1_0 

(13h) 

/82~\ "  / 82~ \  * / 8 0 \  "+1 
= t ~ )  + t ~ - y 2 ) + G r t s y  ) (14a) 

- (~"+~-~*)+u ~ + 

( 8 %  .+, 18 cx* l o o v  +, +b/)  +o%) ( 4b) 

2 /'8z ~'~" [8z~'~ * 
~2At (~I i + " ) = t ~  ) + t ~ ) I ~" + 1 ( ' 5 a ) 

/ 8 2 0 \  "+ 2 ( n+1  * -  t' W 1 1921//5" ~'n+l 
+ -+  +t>)  -' (15b  

where % and ct 0 are relaxation factors which are chosen to 
accelerate the convergence. The velocities u and v appearing in 
t h e  convective terms a r e  e x p r e s s e d  at the step n. The stability 
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conditions of the algorithm were theoretically and numerically 
studied for the natural convection problem by Bontoux et al 17 
A relation for the critical step size is derived from the stability 
analysis as follows: 

At c ~ 1 + { 1 + (28/Pr)} 1/2 Pr t l 6) 
h 2 7 

Optimizat ion and initial condi t ions 

The general method was optimized for use on the vector 
computer Cray-lS. Substantial gains were obtained in 
computing time by the vectorization of the algorithms18.1 o and 
the general use of vectorized program libraries (SCILIB), Cray 
Scientific Library). With 21 × 81 mesh points, a convergent 
solution was obtained with 233 iterations. The computing times 
were: 78.23 s on a Cyber 750; 14.17 and 3.15 on a Cray-I S before 
and after vectorization, respectively. 

The analytical solutions, Eqs (10) and (11), were used with 
a = Gr for the initialization of the computation. Expressions for 
the vertical component of the velocity and the temperature were 
derived from the second-order terms of the expansions in Gr(?,O/ 
('~Y)m given by Bejan and Tien 6. As the enclosure had a finite 
aspect ratio, the solutions were adjusted by a matching function 
e(y) which ensured the non-permeability condition at the 
vertical boundaries. The function e(y) was chosen as a 
hyperbolic tangent of a fourth-order polynomial, the constants 
of which were empirically determined in order to match the 
analytical solutions, Eqs (10) and (IlL in the core and to 
represent the turn of the flow in the end regions: 

1 2 
r 0 , ) = t a n h l c y 2 ( ) - y )  ] {17) 

The value for constant c in Eq (17) was determined as c• 
3.2712/(1 - 1) 2 to match the core solution 2° at y = 1. Two meshes 
were considered for the present study: 21 x 41 and 21 x 81 ; the 
corresponding numerical parameters were respectively 

lZAt=5.5x10 -s, % = 1 ,  :q,=75 

and 

12At=7.3×10 s, % = 1 ,  ~0=10 

Results in the conducting regime ( low Gr) 

The ability or limitation of the analytical solutions to 
approximate the main features of the flow in the core of 
rectangular and cylindrical enclosures have been discussed 
elsewhere with respect to experiments and computations in the 
case of a simple 1G model 9. In the work reported here we 
attempted to extend the derivation of empirical laws on the basis 
of numerical simulation for conduction-dominated regimes in a 
rectangular cavity and for a 2Z furnace. The goal was to 
evaluate the temperature gradient (O0/Sy)m and to establish its 
dependency on the aspect parameters I and 7. 

Influence of 7 and / on isotherm and streamline patterns 

Typical flow solutions at fixed Gr and I are given in Figs 2, 3 and 
4 for I= 0.10, 0.25 and 0.50, respectively, with 3' ranging from 
0.05 to 1.0. The isotherm patterns are characteristic of 
conduction. The convective cells they generate develop 
differently with 7, depending on the aspect ratio I. When l is 
small (/= 0.1 in Fig 2), the convective cell is very concentrated 
near the centre at 7=0.05, and spreads to the entire domain 
when 1' >/0.75. At moderate aspect ratios (l= 0.25 in Fig 3) the 
basic cell at 7~> 0.2 is mainly 'cat-eye' shaped. Although the 
temperature gradient is located at the centre domain, it drives 
t h e  convective flow all around; the streamlines generated in the 
core irrigating the vertical boundaries. At larger gradient width, 
7>0.5, the flow pattern corresponds to a more regular cell 

28 Heat and Fluid Flow 



Effect of temperature gradient locally applied on a long horizontal cavity. G. P. Extremet et al. 

7" 

l (( I))) 1 [ 

a b 
Figure 2 2Z model: (a) isotherm patterns (Ti= ( i -4 ) /10 ,  i=0 to 8), and (b) streamline patterns (t#i=i/10, t ~ m a x ,  i=1 to 9) for Gr~0.420 and 
/=0.10 at ;,=0.05 (~max=-7.51 x10-4), 0.20 (~max=-4.56x10 4) and 0.75 (~rnax=-1.38x10 -4) 

I ) 7 

0 .20  

a 

Figure 3 2Z model: (a) isotherm and (b) streamline 
(¢max = 2.03xl  0 2) and 0.75 (~max=1.48x10 2) 

0 . 0 5  

patterns 

b 
for Gr~22 and /=0.25 at 7=0.05 (~0max=-2.23x10 2), 0.20 

l ) 0,75 

occupying all the cavity and similar to the basic unicell of the 
classical 1G model (7 = 1). When I is larger (/=0.5 in Fig 4) the 
structure of the streamline pattern remains unaffected by the 
variation of 7. 

o,2o 

a 

0.05 

b 
Figure 4 2Z model: (a) isotherm and (b) streamline patterns for 
Gr~175 and /=0.50 at 7=0.05 (~max = -0.230), 0,20 
( ~ / m a x  = - -  0.228) and 0.75 (I/.t m a x  = - -  0.223) 

Influence of ? and / on the main f l ow  properties 

In addition to these results, the temperature profiles along 
horizontals at various heights in the cavity (including the wall 
and the centre line) are shown in Fig 5 for the same I and 7, with 
the temperature gradient along the horizontal centre line. 
Except at 7 = 1, where the gradient is constant (O0/c~y=l) 
through the entire cavity, the temperature gradient on the centre 
line is maximum at the middle of the wall gradient zone, and 
tends towards zero at the side walls. 

As the analytical solution assumes constant (00/?~y)m and 
parallel flow in the core of the gradient zone, it might seem that 
the field of application should be limited approximatively to the 
case of 7/1> 1. However, on the basis that the computed 
solutions exhibit S-shaped profiles, as with Eq (11) (Fig 6), the 
extension of the analytical solutions is also analysed at ?/l < 1. 
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Figure 5 2Z model: temperature gradient (~98/0~) along the horizontal axis of the cavity and temperature profiles at various heights x=0.0, 0.1, 
0.2, 0.3, 0.4, 0.5 for (a) Gr=0.420,/=0.1, (b) Gr/13~1430, •=0.25, and (c) 1=0.50, at various values of 7 

| Analys is  of  the  results in the  c o n d u c t i n g  reg ime  
/ = 0.10 
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/ ,-% 

5 F ~ ~q Gr ~ The basic parameter entering in the solution Eq (11)is (63(),@y)m . 
,, 0 4 2 0  0 0 5  o Thecom u I"1~ 4 l- / \ • - p ted values of (00/@)m in the middle of the gradient 

l / _..-o.._ ~ - -  0 .20  ® zone are reported in Table 1 for a range of aspect ratios and 
_o 3{-o/ j P  ~ \ - -  0.50  • gradient widths, 0.10~</~<0.50and0.05~<7~<l.0. These results 

/ I  ¥ N.. b - -  0.75 • obtained in the conducting regime (Gr/13=420 and 1420) are 
4 0.05 A . . . .  2 ~ [ / ~ N % , \  1 . 4 x  10 shown in F i g 7  and can be correlated with the two following 

I / r / ~ ' % , ' x , ~  functional laws: 

' I , 1 [ ~ )  ~ w h e n ~ < l  (8)  
0 g O. 5 \ ~.Y/m ," a 

/ 7( 80"] ~ 1 when 7>  1 (19) 
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i[ z 2  o . o 5  o 

- l ~ / , ( ' , ~ ~  - -  o z o  
/ W , ~  "~\ - -  0.50 • Analysis of the results in terms of Vma x (or 9ma~) 

o 5 I - I # '  - ~  - -  0.75 • 
"k 2 2 x IO 4 0 0 5  t, From Eq (11), the analytical expression for the maximum 

1~ ~ " velocity, which occurs at x =  1/2(1 + l/x/3), is as follows: 

- ~ _ ~,-/~0~ , ~ 0 '  

D 0 X 0.5 VmaX--vRx/3~OY)m ' -  ) 

I. 0 In fact, we will consider a velocity renormalized by the length L, 
l = 0 . 5 0  b=v/ l  and thus: 

_ 

St" 7" /)max = ~ m  

, 7 5  0 0 5  o 
od 
O 0 . 5  ~ j /  ~ _  - -  0.20 © With the functional laws of Eqs (18) and (19) for (00/@)m, two 

0.50 • expressions are derived from Eq (20), respectively: 

0.75 o = - G r  _ Gr 7 <  1 121) 
1.75 x 105 0.05 /x ~-~l,max 72, f~orvl.max--72v3~/__ when l 

C 0 0.5 Gr I Gr ",' 
X V2,ma x= or ~2,max 72,,/37 when L> 1 122) 

Figure 6 Characteristic horizontal velocities 72 1 
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Table I Solutions for (a0/~)~) in terms of the aspect ratio / and the 
gradient ratio ~, (conduction regime) 

/• 0.05 0.10 0.20 0.50 0.75 1.00 

0.10 9.124 7.375 4.719 1.999 1.333 1.000 
0.15 6.404 5.705 4.21 5 1.986 1.333 - -  
0.20 4.895 4.562 3.695 1.950 1.329 1.000 
0.25 3.962 3.781 3.247 1.896 1.321 - -  
0.50 2.312 2.283 2.174 1.666 1.276 1.000 

1.0 .0 

O.I .I 

I I I I  I I I I I l l l [  I i I l a l l l l  I 

O .I I IO 

7 / !  
Figure 7 Variation of the temperature gradient (c~0/~3l~)m with 
0.1 </<0.5 and 0.05<~<1 in 2Z models in conduction regimes 

I0 

0 .1  
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~ o x  0 . 1 0  • 
(Eq (22)) 0 .15  o 

0 . 2 0  • 
0.25 

Vhmox(Eq(21)) ~ , ~  0 .50  + 

• t-- - ~  

I I I I 
0.1 I I0 

711 

Figure 8 Variation of the maximum horizontal velocity with 7/I in 
the conduction regime for various computed values of / and the 
analytical laws of Eqs (21) and (22) 

Considering a new variable defined as 72x/~Vr~ x/Gr, Eqs (21) 
and (22) can be represented as two straight lines in terms of ~/1 
(Fig 8); these two lines interest at V=I. The computed data 
in Table 2 are displayed also in Fig 8 and agree with the 
behaviour predicted by Eqs (21) and (22). In the domain v/l> 1, 
the agreement becomes better as 7/I increases, for which 
72xf3Vmax/Gr is nearly proportional to l/v. It is mostly 
qualitative when 7/1<1, because, as predicted by Eq (21), 
72xf13Vmax/Gr becomes independent of 7/1 but converges 
towards values which depend on l, and, anyway, stays below the 
theoretical value of 1. 

These behaviour patterns can be interpreted as follows. 

(i) When 7 is decreased from 1 to 0.05 at constant AT and l, 
but in such a way that V > l, the wall temperature gradient is 
locally increased, and is the gradient in the fluid (Figs 2 and 
4); but the temperature gradient remains almost the same 
at the wall and in the core. The computed values OfVma x are 
well predicted by Eq (22) as being proportional to 1/V at a 
given I. 

(ii) When 7 < I the temperature gradient strongly varies from 
the wall to the core, where it takes a much smaller values 
due to the low conductivity of gases (Figs 2 and 4). In 
addition, it strongly diminishes outside the external 
temperature gradient zone in the longitudinal direction 
(Fig 5), although the profiles v(x) are almost independent of 
y over a much larger domain (Fig 4). We would have to 
take some mean values of (Cq0/?y)m over such a domain to 
limit the overprediction given by Eq (21). 

It is to be noted, however, that the overprediction of the 
horizontal velocity is maximal when /=0.25 (the 'cat-eye' 
situations in Fig 3), while the centre gradient drives the flow also 
in the lateral regions near the vertical walls. At /=0.50, the 
magnitude of the velocity is quite independent of ~ in the range 
0.05~<V~<0.50 (Figs 6 and 8). 

The limitation of Eq (21) is also exhibited when relating the 
computed maximum of v, ~ ...... and (c~0/c~) m (given in Tables 2 
and 1). This maximum is scaled by fl, defined as ~ . . . . .  /~max' The 
values of/3 are plotted in terms of 7 for various values of/ in Fig 
9. The extrema of/3 are: 1 at l=), = 1; and nearly 0.43 when 7 = 
0.05, and 0.25<l<0.50. The main features of the results 
presented in Fig 9 can be summarized as follows: 

1.0 

~ 0 . 5  

O. I ~ I t I I I I I I 
0 0 .5  1.0 

7 

Figure 9 Variation of fl with ~/ for various values of / 

! 

0 .10  • 
0 .15  o 
0 . 2 0  + 
0 . 2 5  • 
0 .50Z~ 

Table 2 Solutions for the maximum horizontal velocity component t~max, c for various / and ~, and conduction regimes 

/ ~  0.05 0.10 0.20 0.50 0.75 1.00 

0.10 0.016 95 0.014 80 0.010 30 0.004 57 0.003 12 0.002 39 
0.15 0.124 0 0.116 1 0.093 74 0.048 77 0.034 35 - -  
0.20 0.159 2 0.152 2 0.132 8 0.088 46 0.072 37 0.064 01 
0.25 0.207 1 0.197 1 0.184 4 0.147 4 0.132 8 - -  
0.50 1.007 1.008 1.009 1.004 1.000 0.997 7 

Gr 

0.4 
4.8 

11.4 
22.3 

178.6 
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'V2 . . . .  (Eq(22)) 
/ y T / /  "^/,,......,o-/ 
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I 
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i o - I  

io-2 

i o - ~  t I I [ I I I I I I i I t 
I I0 I02 I03 I04 I05 

Gr i t  

Figure I0 Var ia t ion  o f  the  maximum horizontal velocity in the 
middle of the gradient zone with Car/? for various values of / and ~,, 
(analyt ical  v2,rnax and computed solutions I~max. c for 7/1> 1 ) 
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~x I 0 -j 
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Figure 11 Variation of the maximum horizontal velocity in the 
middle of the gradient zone with Gr/I for  v a r i o u s  v a l u e s  o f  / and 7 
(analytical Vl,max and computed solutions Vrnax. e for ? / /<  I and ~/1=2 
and 5) 

(i) / ~  1 when 7>f0.20 and/~<0.15; 
(ii) /Y~ 0.37 exp(7) when 7J> 0.20 and 0.50~> l~> 0.25; 
(iii) / ~  0.43 when 7-..< 0.20 and 0.50~> l~> 0.25; 
(iv) / ~  0.17 exp(1.27) when 7 < 0.20 and l~< 0.15. 

Over the range of 7 and l considered, Vmaxx is always over- 
predicted by Eq (21); in the worst cases the difference (1 - / / )  is 
close to 60 %. 

R a n g e  o f  v a l i d i t y  o f  f u n c t i o n a l  l a w s  f o r  v . , . x  a t  
l a r g e r  Gr 

Inf luence of Gr on Vma x 

For different sets of values of I and 7, additional computations 
were made for a wide range of Gr, and the results for ~,~ .... 
compared with the functional laws of Eqs (21) and (22). The 
results corresponding to 7/1> 1 are plotted in Fig 10. Very good 
agreement was obtained for I= 0.1 and 7 = 0.2 with the curve 
derived from Eq (22). For ? = 1 and l = 0.2 the computed results 
also fit very well the relation of Eq (22) up to Gr/7~ 1.4x 104, 
where the transition to a boundary-layer-driven regime occurs, 
as revealed by the data's departure from linear variation in a 
way similar to that discussed by Bontoux et al 9. 

The results concerning 7/1< I are shown in Fig 11, with the 
previous results at y/l> 1 plotted as reference. The values Of~ma x 
are plotted in terms of Gr/I. In accordance with Fig 9, the points 
are systematically under the curve corresponding to Eq (21). 
The velocity maximum ~max is shown to be proportional to Gr/l 
at constant 7 and l over a wide range of Gr/l. For Gr/I larger than 
2 x 104 the data slightly vary from the linear curve, as in Fig 10, 
indicating the end of the conduction regime and the beginning of 
the boundary layer regime. 

Inf luence of Gr on (O0/O£t)m 

When 7 = 1 the analytical relation of Eq (20) can be used even far 
from the beginning of the boundary layer regime but with 
adequate values of (O0/0~)m given by functional laws 9. 

The variation of (#0/~) m derived from computations when 
7/1< 1 is shown in Fig 12. As mentioned before, I(OO/O~)m~ 1 for 
conducting regimes, but, when Gr/l> 7 x 103, (00/0~) m is rapidly 
decreasing and becomes negative at Gr/l>-3.6x 104 and 
4.3 x 105, for l=  0.50 and l= 0.25, respectively. As a conclusion, 
the variation of (80/0~)= at large Gr and l>_- 0.25 is so strong that 
Vma × cannot be directly connected to (~0/0~) m as in Eq (20). 
However, the prediction still looks reasonable at l=  0.10 and 
7=0.05 when Gr/l~ 1.4 x 105. 

For 7/1> 1, only two sets of values of 7 and l have been 
considered (Fig 13). The results corresponding to /=0.2 and 
7 = 1 indicate the end of the conduction regime at about Gr/7 >~ 
1.4 x 104. Those for l = 0.1 and 7 = 0.2 concern only conduction- 
dominated regimes up to Gr/7~-7 x 103. 
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/ 7.51 ~ (0.5, 9) 

O(X, 7 )  

1.4  x 10 3 

2Z model, 1=0.10 and7 =0.05: (a) isotherm patterns; (b) 
streamline patterns; (c) temperature profiles O(x, ~) at x=O.O, 0.1, 
0.2, 0.3, 0.4, 0.5, and 00/0)~ (0.5,¢), for Gr =I .4x 103 
(ffmax = - 2.57), 7 x 103 (~max = - 7.02) and 1.4 x 104 
(VJ max = - 10.17) 

In f luence of  Gr on d y n a m i c  and thermal  pat terns  

The streamline and isotherm patterns are shown in Figs 14, 15 
and 16 at 1=0.10, 0.25 and 0.50, respectively, with 7=0.05. 
These graphs involve nine isolines such that Ti= i -4/10,  with 
i = 0  to 8, and ~ki=i/10~k . . . .  with i= 1 to 9. The values of ~Oma x 
are given in the figure captions. Horizontal profiles for the 
temperature and for its gradient (at the centre line) are also 
displayed for different values of Gr. The extrema of the 
gradient are given on the graphs. 

The transition from the conduction-dominated regime to the 
boundary layer regime is mainly exhibited by the isotherm 
patterns. The onset of distortion in the isotherms, due to 
convection, occurs at Gr/l~ 3600, when 7/1< 1 (Fig 12). When 
Gr is further increased, the isotherms are convected far away 
from the centre domain until they interact with the vertical walls 
(Fig 15(a)). In that case the buoyancy forces become important 
in the end regions. Over the range of Gr considered this 
confinement effect was not observed with l--0.10 and 7 =0.05 
(Fig 14(a)). With l = 0.25 and 0.50, the confinement effect, which 
were arbitrarily characterized by (O0/~]v)(x, ~')> 0.1 at x=  1/2 and 
y = 0, occurs respectively at Gr ~ 2 x 104 and 9 x 103. The critical 
value of Gr for the appearance of the confinement effect 
(following this criterion) seems to Gr-~4500/l. Above the 
threshold, the isotherms tend to concentrate near the walls, and 
the core becomes almost isothermal (0~0) (Figs 15(a) and 
16(a)). At the centre the isotherm 0 = 0 can be strongly distorted 
at Gr=l.1 x 105 for •=0.25 and at G r = l . 7 x  104 with 1=0.50 
giving rise to the negative values of (d0/O~')m mentioned 
above. 

Although the modifications in the temperature profiles and 
the horizontal thermal gradient profiles are associated with the 
change in the flow structure, the streamline patterns look less 
disturbed for the range of parameters considered. When l = 0.50 
there is no obvious distortion in the pattern, except at Gr ~ 8750, 
where there is a slight increase of the flow parallelism in the 
middle of the cavity (Fig 16(b)). When l= 0.25 the transition to 
the convection-dominated regime results in the vanishing of the 
'cat-eye' pattern into a unicellular pattern which affects the entire 
cavity, with a regular parallel flow in the centre at Gr = 1.1 x 105 
(Fig 15(b)). When l= 0.10, the central basic cell spreads around 
the gradient zone with increasing Gr (Fig 14(b)). However, at the 
largest Gr value considered, Gr = 1.4 x 10 4, the confinement still 
does not limit the displacement of the isotherms. 

Additional sets of streamline and isotherm patterns are given 
for I=0.25 and 0.50, with 7=0.20, in Figs 17 and 18. They 
confirm the previous observations made for 7 = 0.05, showing 
the effect of Gr, which is only slight on the streamlines but very 
strong on the isotherms for 2.2 x 10z< Gr< 2.2 x 104 at l=0.25, 
and 1.75 x 103< Gr< 1.75 x 104 at l=0.5. 

The comparison of the corresponding graphs, mainly in Figs 
16 and 18 shows, that 7 has only a small effect, at least in the range 
0.05~<?,~< 0.2, when 7--.< I. 

For ?, > 1, most of the conclusions of previous studies at 7 = 1 
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Figure 15 2Z model, •=0.25 andT=0.05: (a) isotherm patterns; (b) 
streamline patterns; (c) temperature profiles e(x, p) at x=0.0, 0.1, 
0.2, 0.3, 0.4, 0.5, and ~e/~p (0.5, p), for Gr =1.1 x104 
(¢max= - 8.70), 2.2x 104 (~max= - 20.63) and 1.1 ×105 
(¢max = - 87.29) 
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Figure 16 2Z model,/=0.50 and 7 =0.05: (a) isotherm patterns; (b) streamline patterns; (c) temperature profiles ~(x, ~) at x=O.O, 0.1,0.2, 0.3, 
0.4, 0.5, and ~/~)~ (0.5, ~), for Gr = 1.75 x 103 (¢max = - 2.29), 8.75 x 103 (¢max = - 11.27) and 1.75 × 104 Cmax = - 22.25) 
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2.2 x 10 3 

apply. The characteristic variable Vm,x increases linearly with 1/~, 
(Eq (22)). 

For  7 < l  the correlation for V~x is not so good even in the 
core-driven regime. Eq (21), based on (dO/dy)m overpredicts 
significantly the computed values of Vmax,c. A correction 
parameter fl = v~,~/V~,x is given in terms of~ at various values 
of 1 in Fig 9. 
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2.2 x 103 
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Figure 17 2Z model, I = 0.25 and 7 = 0.20: (a) isotherm patterns; (b) 
streamline patterns; (c) temperature profiles 0 (x, I~) at x=O.O, 0.1, 
0.2, 0.3, 0.4, 0.5, and dO/d)7 (0.5, ~), Gr=2.2xlO 3 (ffmax=-2.01) 
and 2.2x104 (~max = -14.36) 

C o n c l u s i o n s  

The two-dimensional Boussinesq equations in rectangular 
cavities were solved numerically by an accurate finite difference 
technique. We considered the case where the buoyancy driving 
forces are generated by an external temperature gradient 
applied only on a given distance along the horizontal walls of 
the cavity. Such a situation corresponds, for instance, to a two- 
zone furnace for crystal growth processing by vapour transport. 

An insight was obtained into the influence of the width, 7, of 
this external temperature gradient on the isotherm and 
streamline patterns for aspect ratios 0 .10</<0.50  and for 
various Grashof numbers in a range including 'conduction' (or 
core-driven) intermediate and boundary layer regimes. 

One of the goals of this study was to analyse the behaviour of 
(80/t3~) m, which is known in the classical limiting case of 7 = 1 
and l---~0 to have a dominant influence on the maximum 
horizontal velocity Vmax for the conducting and intermediate 
regimes. It was found that, for 0~< ), ~< 1, (t30/d~)~ behaves like 1/l 
for ~, < l  and like 1/7 for ~ > l  in the core-driven regime. 

The variation of the ration fl=bm, x,c/~m~x allows rapid 
prediction of ~max accurate enough for practical applications, for 
example in crystal processing. 

For the intermediate and boundary layer regime, the 
parameter (80/d~)~ appears to become rapidly irrelevant, when 
Gr is increased, for a correct estimation of Vm, x, at least when 

< I. In that case only a direct numerical simulation, like the one 
shown in this paper, can give the correct evaluation of the flow 
field pattern. 
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Figure 18 2Z model, •=0.50 and ~ =0.20: (a) isotherm patterns; (b) streamline patterns; (c) temperature profiles 0 (x,)~) at x=O.O, 0.1,0.2, 0.3, 
0.4, 0.5, and ao/a~ (0.51~), for Gr=1.75 x 103 (~kmax = -2.27),  8.75 x 103 (~kmax = -11.25) and 1.75 x 104 (~kmax = -22.22) 
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